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We present a new theoretical model of ‘late-time’ phenomena related to the 
interaction of a planar shock with a local, discrete inhomogeneity in an ambient gas. 
The term ‘late-time’ applies to the evolution of the inhomogeneity and the flow 
field after interaction with the incident shock has ceased. Observations of a shock 
propagating through a bubble or a spherical flame have exhibited or implied the 
formation of vortex structures and have showed continual distortion of the bubble 
or flame. Our theory shows that this is due to the generation of long-lived vorticity 
a t  the edge of the discrete inhomogeneity. The vorticity interacts with itself through 
the medium of the fluid, and, depending on the geometry of the discrete 
inhomogeneity, can roll up into vortex filaments or vortex rings. To verify and 
amplify this theoretical description, we use numerical solutions of the fluid equations 
for conservation of mass, momentum, and energy to study the interaction of a weak 
shock with a cylindrical or spherical bubble. The simulated bubble has either a higher 
or lower density than the ambient gas. I n  this way, the calculations provide insights 
into the effects of both geometry and distortion of the local sound speed. The Mach 
number of the shock is 1.2, the ambient gas is air, and the pressure is 1 atmosphere. 
Because of the simple geometry of each bubble, the vorticity generated at  the 
boundary rolls up into a vortex filament pair (cylindrical bubble) or a vortex ring 
(spherical bubble). The structural features and timescales of the phenomena 
observed in the calculations agree closely with recent experiments of Haas & 
Sturtevant, in which helium and Freon bubbles were used to provide the local 
departures from ambient density. The discussion of results includes a survey of 
alternative numerical methods, sources of uncertainty in velocities of interfaces or 
structures, as derived from the laboratory and numerical experiments, and the 
relationship of our analysis to other theories. 

1. Introduction 
The propagation of a shock through a non-uniform gas results in refraction, 

diffraction, and reflection of the shock wave a t  inhomogeneities that are present. 
Such deviations from global symmetry distort the transmission of the shock through 
the gas. In  addition, the interactions of pressure waves with density fluctuations in 
a fluid are a major source of vorticity and turbulent motion (Picone & Boris 1983). 
These rotational flows evolve on much longer timescales than that of shock passage 
through the local non-uniformity and can have important long-term effects on the 
structure and properties of the fluid. Vorticity generation by this and closely related 
mechanisms (Picone & Boris, 1983) has proven to be significant in studies of the 
operation of ramjet engines (e.g. see Rudinger 1958), the efficiency of inertial 
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confinement fusion (Emery et al. 1984), and the rate a t  which lightning channels cool 
(Picone et al. 1981). 

Shock-tube experiments have been the major source of data on the generation of 
rotational motion by the interaction of shocks with inhomogeneous gases. 
Particularly noteworthy are the studies of shock propagation through flames by 
Markstein (e.g. 1957a, b )  and the recent work of Haas (1983, 1984) and Haas & 
Sturtevant (1987) on shock-bubble interactions. Haas & Sturtevant investigated 
cases in which either single or multiple scatterers (bubbles) were present. Our 
primary interest is in the spherical-flame and single-bubble experiments of the 
respective authors. These are, in effect, limiting cases of a fluid in which deviations 
from ambient are localized and widely separated relative to their representative 
spatial scales. 

Because non-reactive gases were used, the experiments of Haas & Sturtevant 
provide a good basis for studying vorticity generation by shock interactions with 
discrete inhomogeneities in a fluid. Haas & Sturtevant used air as the ambient gas, 
and the bubble contained a mixture of air with either helium or Freon-22. They 
studied geometrical effects by using bubbles that were cylindrical or spherical in 
shape. Both Markstein and Hass & Sturtevant noted the appearance of a vortex ring 
in the axisymmetric geometry (spherical flame or bubble, respectively), but the 
presence of vortex structures was initially more difficult to discern in shadowgraphs 
of the cylindrical-bubble experiments (Haas 1983). Markstein (l957a, b ) ,  Haas 
(1984) and Haas & Sturtevant (1987) considered linearized impulsive Rayleigh- 
Taylor instability theory (Richtmyer 1960) in analysing the behaviour of the non- 
uniformity (the flame or bubble) after passage of the shock. In  addition, Haas & 
Sturtevant used more sophisticated models attributed to Rudinger & Somers (1960) 
and Taylor (1953), on the one hand, and to Rulkarny (see Haas & Sturtevant 1987, 
p. 72), Maxworthy (1977), and Didden (1979) on the other. The latter model 
originally treated vortex generation by impulsive motion of a piston that ejected 
fluid from the mouth of a short cylindrical chamber. 

Recently Picone & Boris (1983) developed a nonlinear theory of shock-generated 
vorticity. Later Picone ef al. (1985) applied the theory to the experiments of 
Markstein, in which a planar shock interacted with a spherical flame. The 
accompanying numerical simulations of the shock-flame interaction assumed a 
smoothly varying radial density distribution (Bennett profile) for the flame, 

Here pm is the ambient density; pa is the density a t  the centre of the flame; r is the 
distance from the centre of the flame ; and So is the radius of the flame boundary. The 
Bennett distribution constrasts with the steep gradient that would be expected a t  
the edge of a flame or a bubble. However, the timescales and velocities in the 
simulations agreed closely with the experimental values. Both the theory and the 
simulations showed that the evolution of the system is inherently nonlinear from 
the time at  which the interaction begins. 

This work by Picone et al. appeared at  a highly specialized conference and the work 
is not well known to the fluid dynamics community. Elements of the theory have 
begun to appear in the literature (Haas & Sturtevant 1987) through private 
communications from the present authors. Understanding of the new theory by 
other authors, however, is far from suffirient to apply it to other relevant problems. 
The main purpose of this paper is to outline the theory for the fluid dynamics 
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community a t  large, and to present a numerical and theoretical treatment 
appropriate to inhomogeneities with sharp, well-defined boundaries. 

To reveal the detailed physics of the vorticity-generation process, later sections 
present numerical simulations of four idealized cases. The cases correspond closely to 
the experiments of Haas & Sturtevant, including a cylindrical or spherical bubble 
which is less dense or more dense than the ambient gas (air). Section 3 describes our 
numerical algorithms and the model based on the numerical algorithms. The 
Appendix compares our basic numerical algorithms to other potentially useful 
algorithms with regard to accuracy and the state of the art for modelling the 
phenomena considered here. Section 4 presents the results of our simulations and 
compares them with the observations of Haas & Sturtevant. For completeness, this 
discussion includes comparisons of velocities of interfaces or structures, as derived 
from the experiments and our numerical simulations. A final subsection analyses the 
measurement inaccuracies inherent in values reported for these velocities for both 
the laboratory experiments and the present numerical simulations. In  some 
instances, the same uncertainties are present in both laboratory and numerical 
experiments. Section 5 summarizes the work and our conclusions. 

2. Theoretical analysis 
The basis for our theory is the equation 

do u p  x U P  

at P2 
-+ou-v = w.Vv+ 

which governs the evolution of vorticity o in an inviscid fluid. Here the fluid velocity 
is v ;  the pressure is P ;  and the mass density is p.  As shown by (l),  misalignment of 
the local pressure and density gradients leads to a non-zero source term 

vp  x UP Sr 
-2 
P for the generation of vorticity. 

First let us describe the physical process under consideration: a planar shock 
propagating through a gas and striking a bubble with a circular cross-section. 
Assume that the bubble has a uniform density which differs from the ambient 
density. This interaction will result in a shock that is transmitted through the 
interior of the bubble while a portion of the incident shock diffracts around the edge 
of the bubble. Because of the curved surface of the bubble, different parts of the 
incident planar shock will reach the bubble a t  different times, so the ‘refracted’ 
(interior) shock will be curved. In  addition, given that the bubble density differs from 
the ambient gas density, the interior shock will travel at a different speed than the 
exterior diffracted shock. Ray tracing and geometric acoustics can provide a useful 
picture of the qualitative features of this process (see Haas & Sturtevant 1987). 
Section 4 describes our numerical simulations of this process and provides density 
contour diagrams that follow the evolution of the system. 

Now define the x-axis to be a line which is parallel to the direction of propagation 
of the incident shock and which passes through the centre of the circular cross- 
section of the bubble. When the incident shock reaches the bubble, the pressure 
gradient of the shock and the density gradient of the bubble at the point of contact will 
coincide with the x-axis. Equations (1) and (2) tell us that little or no vorticity will 
be generated under these conditions. As the interaction progresses, however, both the 
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incident (diffracted) shock and the interior refracted shock will have pressure 
gradients that are not aligned with the density gradient of the bubble, the latter 
being radially outward from the centre of the bubble. Under these conditions, the 
vorticity source term in (2) is non-negligible, and significant vorticity is generated at  
the edge of the bubble, where the density gradient is non-zero. As the diffracted and 
refracted shocks reach the downstream side of the bubble, the pressure gradients of 
the shocks and the bubble density gradient will again be approximately aligned and 
the source term will again be small where the bubble intersects the x-axis. The 
vorticity plots in $4 follow the evolution of this process. 

The vorticity vector will be perpendicular to the plane defined by the circular 
cross-section of the bubble. Notice that, in this plane, the sign of the vorticity 
generated along the edge of the bubble will be opposite on opposite sides of the x-axis. 
The rotational motion induced by the non-zero vorticity distorts both the bubble and 
the vorticity distribution itself. The latter rolls up into vortex structures (a pair of 
vortex filaments or a vortex ring) appropriate to the underlying symmetry of the 
bubble (cylindrical or spherical, respectively). 

2.1. Vortex strength 

Continue to define the x-axis as above. For a system that varies only in the (x, y)- 
plane, the vortex strength in the region (y 2 0) containing the upper half of the 
bubble is the solution to the following equation: 

dlc vp x VP 
dA ( t )  , (3) 

which we obtain by integrating ( 1 )  in a Lagrangian sense over the area A(t) 
containing the upper half of the bubble and moving with the bubble. Performing the 
integral over the time of passage of the shock through the bubble (Picone et al. 1985) 
gives the following relation for the magnitude of the vortex strength or circulation K :  

Here V,  is the flow velocity behind the shock in the laboratory frame, W is the shock 
velocity, So is the radius of the cross-section of the bubble, pm is the ambient density, 
and pb is the density of the gas in the bubble. To perform the integration, we assumed 
the shock to be a planar discontinuity, ignoring the effects of curvature and 
differences between strengths of the (interior) refracted shock and (exterior) incident 
and diffracted shocks. The detailed evolution of the system revealed by the 
numerical simulations (94), when combined with the theory, ( 2 ) ,  indicates that the 
distortion and interaction of the various shocks will lead to a reduction in vortex 
strength relative to that given by (4). Measurements of the vortex strength from the 
simulation data confirm that prediction. However, scaling arguments (Picone & 
Boris 1983) indicate that the functional variations and trends (for example, with 
V, and shock velocity W )  in (4) are correct. 

The fact that (4) provides accurate scaling relationships among the various 
parameters in the problem is of great use in understanding both the laboratory 
experiments and the numerical simulations. An example of the former occurs in 
analysing the speed a t  which the vortex structures and the bubble propagate 
sometime after interaction with the shock has ceased. The propagation velocities of 
a vortex filament pair or a vortex ring are proportional to the vortex strength K .  
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Equation (4) shows that the velocities, when normalized by V, (the flow speed behind 
the incident shock) will decrease with increasing Mach number, since V,/W will 
increase with Mach number. Experiment has verified this prediction (Haas & 
Sturtevant 1987). Other theories have been unable to verifiy this result (see 
discussion in Haas & Sturtevant 1987). Section 4 shows how (4) can aid in the 
analysis of numerical simulations as well. 

2.2. Relationship to Rayleigh-Taylor instability 
The conventional Rayleigh-Taylor instability theory begins with an infinitesimal 
spatial perturbation which exists for a long (infinite) period of time relative to the 
growth rate of the perturbation. A previous paper (Picone et al. 1985) pointed out 
that the source term of the vorticity evolution equation, (2), provides the 
generalization of the usual notion of Rayleigh-Taylor instability to the entire 
conceivable range of space scales, timescales, and perturbation geometry. In 
particular the problem considered in this paper consists of a finite ‘perturbation’ (the 
bubble) and a finite timescale over which vorticity is produced (the time for shock 
passage through the bubble). The bubble introduces another difference from the 
usual picture, since the perturbation is not sinusoidal. This is a fundamental 
departure from the impulsive Rayleigh-Taylor or Richtmyer-Meshkov (Richtmyer 
1960; Meshkow 1970) instability, in which a planar shock passes through a rippled 
interface or a perturbed shock passes through a planar interface. Such a system can 
initially show linear growth. In constrast, the shock-bubble interaction with the 
subsequent flow-field evolution represents a nonlinear process from the beginning, as 
discussed above. Arguments have been made that the linear theory can fit the 
shock-bubble problem by treating the side of the bubble facing the shock as part of 
a sinusoidal density discontinuity of wavelength 2nR(R = bubble radius). However, 
as shown by the calculations in $ 4  and the laboratory experiments (Haas & 
Sturtevant, 1987), the subsequent distortion of the upstream edge of the bubble by 
the vorticity field has an apparent wavelength of about $R. The choice of wavelength 
for the linear theory is therefore ambiguous. In  spite of this ambiguity, the linear 
theory has provided valuable insights (Markstein 1957 a ,  b ; Haas & Sturtevant 
1987). Haas & Sturtevant (1987) have discussed the relationship between linear 
theory and experiment in detail and have provided an excellent picture of the 
strengths and limitations of the linear theory. 

2.3. Other theories of vortex formation 
Haas & Sturtevant have discussed two additional models of vortex formation and 
have related them to the experiments which have been simulated here. The first, due 
to Rudinger & Somers (1960), describes the process as an acceleration of the bubble 
during the initial transients and transformation into a vortex ring in analogy to 
Taylor’s (1953) ‘dissolved’ vortex-generating disk. The second was an adaptation by 
Haas & Sturtevant of models developed by Kulkarny (see Haas & Sturtevant 1987, 
p. 72), Maxworthy (1977), and Didden (1979) for vortex-ring formation by impulsive 
fluid flow from the mouth of a tube. The application of those ideas by Haas & 
Sturtevant treated the air jet observed in the two helium cases as a piston which 
generates vorticity. Given the dynamics of vorticity generation demonstrated by our 
simulations, neither mechanism adequately describes the actual physical process. 
The key element here is that vorticity resides on the edge of the bubble from the time 
by which the incident shock interacts with the bubble. Further, the vorticity 
interacts with the surrounding fluid to produce a jet and interacts with itself through 
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the medium of the fluid to  produce compact structures - filaments or a ring. Here we 
use the term ‘vortex filament ’ in the sense of Lamb (19451, to denote the fluid within 
a vortex tube having a finite cross-section, as opposed to a vortex line. I n  a two- 
dimensional (x, y)  Cartesian system, a finite vortex represents the cross-section of a 
vortex filament whose axis is a straight line perpendicular to the (x,y)-plane. 

Given the above discussion, impulsively generated motion of the bubble through 
the ambient gas does not itself produce the observed vorticity and the jet is the 
symptom rather than the cause of the vorticity generation. In  addition, the theory 
outlined in 9 2.1 applies equally to all four cases, whereas the piston-generator theory 
appears to apply to the helium cases only. Note, however, that  these models are still 
quite useful in providing insights into the observed phenomena. 

3. Numerical simulations 
We have used the FASTBD computer code (Picone & Boris 1983 ; Book et al. 1981) 

to simulate the interaction of a planar shock with four types of discrete 
inhomogeneities (cylindrical, spherical ; less dense than ambient, more dense than 
ambient). Our primary objectives are to investigate the theoretical picture presented 
in the previous section and to provide a thorough understanding of the basic physical 
phenomena associated with the generation of vorticity through the shock-bubble 
interaction. Because the shock tube experiments of Haas & Sturtevant (1987) 
provide an excellent point of reference, the initial conditions for the numerical 
simulations match those of Haas & Sturtevant to the extent possible within the 
limits of the numerical model. The design of the model permits a close comparison 
of the evolving morphology of the numerically simulated flow field and bubble with 
structural features observed in the laboratory shadowgraphs. More detailed 
modelling of the laboratory experiments (i.e. to obtain closer quantitative agreement) 
was not necessary to reveal the physical processes accompanying vorticity 
generation. 

This section presents the following: (i) the basic numerical algorithm for 
hydrodynamics in FASTBD, including an assessment of numerical accuracy, and (ii) 
details of the numerical model for shock-bubble interactions. The Appendix provides 
a survey of those numerical algorithms for hydrodynamics that have been used to  
treat a t  least some of the phenomena encountered in the problem under consideration. 
To be adequate for our purposes, however, an algorithm must be applicable to all of 
the phenomena involved. This includes non-steady, supersonic, compressible flows 
(shocks) which generate non-steady, complex rotational flows embedded in a 
compressible medium. The Appendix assesses the ability of other algorithms to 
satisfy this criterion, the cost and complexity of each technique, and the present 
degree of success in implementing each algorithm in practical computer codes. In  this 
way, the authors hope to provide the reader with some perspective on the methods 
used in the present simulations. To complete our assessment of the numerical model, 
the last part of $ 4  discusses the relationship between the laboratory and numerical 
experiments, including measurement uncertainties common to both or unique to 
either. 

3.1. The FAST2D computer code 
The FASTSD algorithm employs time-step splitting in conjunction with flux- 
corrected transport (FCT: Boris & Book 1976; Zalesak 1979) to solve the fluid 
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equations for conservation of mass, momentum, and energy for inviscid, compressible 

( 5 a )  

flows : 
aP - + v - ( p v )  = 0, 
at 

where 

apv 
-+V. (pvv)  = -VP. 
at 

aE 
- + V * ( E v )  = - V . ( P u ) ,  (5c) at 

is the total energy density and y is the ratio of specific heats. The FCT algorithm is 
state-of-the-art for treating supersonic compressible flows involving discontinuities 
like shocks. In  the region of a discontinuity, FCT uses a time- and space-centred- 
difference scheme with additional zeroth-order diffusion to integrate the conservation 
equations. The presence of the diffusion prevents dispersive ripples and instability 
near discontinuities in the flow field. As the distance from the discontinuity increases, 
the algorithm then transitions nonlinearly to a second-order scheme that is similar 
to the Lax-Wendroff algorithm (Richtmyer & Morton 1967). This scheme has fourth- 
order phase accuracy and fourth-order dissipation. In this way, the numerical 
method remains stable in the vicinity of a discontinuity while maintaining high-order 
accuracy in the vast majority of cells where no discontinuity exists. The FCT 
algorithm does suppress short-wavelength variations (around two cells or less). This 
paper will be concerned only with large-scale rotational motion, which contains most 
of the energy and which FCT treats very accurately. The FAST2D code has produced 
excellent agreement with data from a variety of experiments, including studies of 
shock reflections from wedges in non-reactive fluids (Book et al. 1981) and studies of 
detonation cell structure, in which the reactive chemistry was modelled (Oran et al. 
1983). Grinstein, Oran & Boris (1986) have successfully applied FAST2D to subsonic 
rotational flows. 

One especially noteworthy feature of the FAST2D code and the FCT module 
contained therein is that  of adaptive gridding, which maintains the greatest 
resolution a t  the smallest features to be studied in the flow. This feature reduces costs 
significantly by permitting cells of varying size, as long as the variation in dimensions 
from cell to cell is less than 25%. In addition, various regions of the grid can move 
with waves or other fluid structures. This is accomplished by comparing the grid cells 
from time step to time step and computing the velocity Ugi of each cell i. The FCT 
algorithm computes changes in the conserved quantities in terms of the net flux of 
each quantity (e.g. mass) into the cell, which involves the quantities vJJ,,, where 
vi is the fluid velocity in cell i .  Boris (1976) has described this procedure in detail, and 
rigorous tests of the adaptive-gridding algorithm have been peformed (e.g. Book 
et al. 1981) in especially demanding problems involving strong shocks. We use this 
feature to provide better resolution of the bubble boundary. The subsonic flows that' 
are present at the bubble deforms and evolves represent no problem for the adaptive- 
gridding feature. 

3.2. Numerical model 
Figure 1 shows a schematic of the computational domain with the initial conditions 
inside the domain and the boundary conditions for the calculations. The heavy black 
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FIGURE 1.  Schematic of boundary conditions and initial conditions for the calculations. The heavy 
black line surrounds the computational domain, which coincides with the upper half of the shock 
tube, the latter being indicated by dashed lines. See the beginning of 3 3.2 for details. 

Shock-tube wall 

line surrounds the computational domain, with the y-axis vertical and the x-axis 
horizontal for the cylindrical bubble cases. In the spherical (axisymmetric) cages, the 
r-axis is vertical and the z-axis is horizontal. The dashed lines show the upper and 
lower edges and the axis of the shock tube to indicate where the computational 
domain lies. Not shown explicitly are boundary cells that surround the computational 
domain and which contain the parameter values necessary to maintain the desired 
conditions a t  the edge of the computational domain. 

The upper boundary of the grid coincides with the upper edge of the shock-tube 
wall. Because the upper half of the system is a mirror image of the lower half, the 
calculations include only the upper half, as shown. The lower boundary of the grid 
thus coincides with the shock-tube axis. Both the upper and lower boundaries of the 
computational grid are treated as perfectly reflecting. The incident shock moves 
from left to right in figure 1. Throughout the calculation, the left boundary cells 
contain parameter values (p,,Pz,vs = V2,vy = 0) corresponding to the region behind 
a planar shock of Mach number 1.23 (cylindrical-bubble case) or 1.25 (spherical- 
bubble case). As shown inside the computational domain, the same values are used 
as initial conditions behind the shock, which lies a few cells inside the computational 
grid. The left boundary condition also permits smooth outflow of reflected waves 
produced by the shock-bubble interaction. The right boundary condition must 
similarly permit the smooth outflow of any rightward-moving waves, including the 
distorted incident shock. Figure 1 shows that this is accomplished by maintaining a 
'zero gradient ' in all fluid variables (e.g. Vv = 0) a t  the right boundary. Although 
more sophisticated treatments are available (Grinstein et al. 1986), tests have shown 
our method to be sufficient. 

The computer model simulates a two-dimensional cross-section of the cylindrical- 
bubble cases by using Cartesian coordinates. The x-axis is horizontal and the y-axis 
is vertical, as shown in figures 2, 3, 6 and 7. The calculation thus corresponds to a 
planar shock interacting with an infinitely long cylindrical bubble, the axis of which 
is perpendicular to the shock-tube axis. The shock tube in the experiments was 
horizontal as in our figures. 

Cylindrical coordinates ( r , z )  are necessary to treat the case of the planar shock 
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interacting with a spherical bubble. As shown in figures 4, 5, 8 and 9, the z-axis 
coincides with the axis of the shock tube, and the r-axis is vertical. Again the 
simulation includes only the upper half of the system. Because of the azimuthal 
symmetry about the z-axis, the semicircle in figure 4 represents a cross-section (great 
circle) of a sphere. The boundary conditions are the same as those described in the 
first paragraph. Notice that, in the case of the cylindrical bubble, the calculation 
treats the shock tube as having an infinite slab geometry with the infinite dimension 
perpendicular to the computational grid. In  the axisymmetric case (spherical 
bubble), our simulated shock tube is a cylinder. 

Besides the existence of both supersonic and long-term rotational flows, this 
problem contains further computational difficulties involved with the presence of 
two fluids of different density separated by a discontinuous interface. A curved, 
discontinuous interface on a rectilinear differencing grid would have a jagged 
boundary characteristic of the edges of the grid cells. The initialization of a bubble 
on the rectilinear differencing grid thus requires some care, since the bounding 
surface might not be as smooth as in the experiment. If the boundary were initially 
too irregular, the impulsive Rayleigh-Taylor (Markstein 1957 a ,  b) or Richtmyer- 
Meshkov instability could be induced by passage of the shock through the surface. 
In  early tests, we initialized the density without regard to this consideration, so 
that 

Here rij labels the position of grid cell (i,  j) ; rb is the location of the centre of the two- 
dimensional bubble; pb is the density of the bubble gas; pm is the density of the 
ambient gas; and So is the radius of the bubble. After passage of the shock through 
the bubble, slow linear growth of a small numerically induced ripple occurred a t  the 
downstream edge of the 'light' bubble (density less than ambient) near the shock- 
tube axis. According to (1) and (2), the shock should generate little vorticity there 
if the numerical boundary were smooth. 

Although this small instability did not intefere with the large-scale flows of 
interest, the authors have added several features to the code to improve the 
regularity of the 'numerical ' bubble surface and eliminate such phenomena : 

(i) The computational grid has an embedded region of fine cells surrounding the 
bubble. This fine grid moves with the bubble to maintain the necessary resolution of 
the bubble boundary while minimizing the cost of the calculation (see $3.1) .  The 
approximate speed of the bubble thus defines the velocity of the fine grid and can be 
estimated from the velocity V ,  of fluid behind the incident shock and the vortex 
strength K in (4), according to the equation 

,Here Vb is the velocity of the bubble and d is the perpendicular distance of the vortex 
core to the axis of the shock tube. The authors stopped the calculation and checked 
the placement of the grid periodically, adjusting the velocity of the fine grid when 
necessary. At the edges of the fine grid, the cell dimensions transition smoothly to 
those of the remaining coarse cells. This smooth transition ensures the numerical 
stability and accuracy of the FCT algorithm throughout the grid. 

(ii) To initialize the calculations, the model interpolates carefully between the 
ambient density and the density of the gas in the bubble for the cells through which 
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the bubble boundary (circle of radius So) passes. The interpolation depends on the 
fraction ail of boundary cell area that falls inside the bubble radius. I n  each boundary 
cell (i, j ) ,  the mass density a t  time t = 0 is 

p(rii* 0) = aijpb + ( 1  - aij) pm. 

Because this is done before the calculation begins and because FASTSD explicitly 
conserves mass, momentsum, and energy, this interpolation has no effect on the 
conserved quantities. 

(iii) A diffusive smoothing technique spreads the boundary over approximately 
t,wo cells before the calculation begins. This does not degrade the calculation because 
FClT will not maintain a discontinuity over fewer than two cells (see the Appendix). 
Again this intialization does not affect conservation. 

The thicker smoother boundary a t  time t = 0 eliminates numerically induced 
Richtmyer-Meshkov instability from the simulations. An alternative approach 
would have consisted of significantly reducing the sizes of the grid cells. This would 
have added considerable expense to the calculation at each time step by increasing the 
number of grid cells and by decreasing the time-step size, proportional to the smallest 
grid-cell dimension. The latter increases the number of time steps covering a given 
amount of elapsed time. A factor of two decrease in each cell dimension while 
maintaining the same system size would increase the computer- time expenditure by 
approximately a factor of eight. 

The need to resolve the bubble surface well has led to  the use of 100 cells in the fine 
grid which surrounds the bubble throughout the calculation. The sensitivity of the 
FASTBD computer code to  grid cells size has been the subject of extensive testing 
(e.g. Grinstein et al. 1986). The result has been that, for resolution like that used here, 
changes of t 50 % have made no difference in the observation of evolving large-scale 
fluid structures and only slight differences in values of the fundamental variables 
(e.g. mass density, fluid velocities, etc.). Since FASTBD respresents discontinuities as 
being spread over 2-3 cells, the uncertainty in locating physical interfaces will 
decrease with decreasing cell size. This affects the quantitative determination of 
structural velocities from the numerical data. Section 4.6 discusses this and other 
considerations in interpreting such velocities. The physical description of the 
phenomena, in which we are primarily interested, however, does not change 
significantly, and the cost of higher resolution (factor of eight in cost for cell 
dimensions of half the original size) is not justified. 

The model does not account for the effects of surface tension of a physical bubble 
surface, nor does the code include a physical viscosity. The surface tension is small 
(Haas 1984) ; however, it  will act to suppress the growth of instability on the surface 
of the bubble (54.3). As to viscosity, the FCT algorithm has a large numerical 
dissipation (effective viscosity for the momentum density) in the vicinity of 
discontinuities to ensure a well-behaved solution there. By construction, however, 
this viscosity cannot spread the discontinuities over more than 2-3 cells (see the 
Appendix). Tests of the FASTSD code with realistic diffusive terms added have 
shown that, on the timescales of the system evolution, such terms make very little 
difference, especially for the large-scale phenomena studied here. This is easy to see, 
since at  room temperature the kinematic viscosity, the molecular diffusivity, and the 
thermal diffusivity are all approximately 0.2 cm2/s (Batchelor 1967, p. 594). This 
would cause very little spreading of fluid structures on timescales of 1 ms or so, as in 
these simulations. 
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4. Results of numerical simulations 
Our primary interest lies in the mechanisms and phenomenology of vorticity 

generation and the late time evolution of the system. Thus the discussions and figures 
below do not deal in detail with the shock diffraction, reflection, and refraction by 
the bubbles. A larger number of density contours would shed more light on this 
aspect; however, a future paper examines the very early time phenomena using a 
new finite-element compressible code (Liihner, Picone & Boris 1988). Haas & 
Sturtevant (1987) have already explained the major qualitative features of these 
processes in terms of geometric acoustics. 

4.1. ‘Light’ cylindrical bubble 
Figures 2 and 3 show density and vorticity contour diagrams for the interaction of 
a planar shock of Mach number M = 1.23 with a cylindrical bubble that is less dense 
than the ambient gas (‘light’ cylindrical bubble). The bubble has a diameter 
D = 51 mm. The vertical dimension of the simulated shock tube is 8.9 cm while the 
dimension perpendicular to the figure is infinite. In the experiment of Haas & 
Sturtevant, the test section had a square cross-section of 8.9 ern on a side. The 
density of the gas inside the bubble is 0.214 x g/cm3, which falls in the middle 
of the range of densities used by Haas & Sturtevant. The density of the ambient gas 
is 1.29 x g/cm3 and the pressure is 1 atm. The Cartesian grid consists of 150 x 50 
cells. There are 50 x 50 coarse cells of dimensions Ax = 0.422 cm and Ay = 0.089 cm 
and 100 x 50 fine cells of dimension 0.089 cm on a side. The fine cells surround and 
travel with the bubble. These calculations have used a ratio of specific heats 
y = 1.4 (see 54.6). The initial conditions behind the planar incident shock were 
p, = 1.80 x 10-3g/~m3, P, = 1.62 x lo6 dyn/cm2 and V ,  = 1.15 x lo4 cm/s. 

The vorticity contour diagrams show that positive vorticity is produced along the 
upper edge of the bubble, excluding regions near the axis of the shock tube (x-axis) 
where the pressure gradient of the shock and the density gradient a t  the edge of the 
bubble are aligned. This is consistent with the source term in (2). Positive vorticity 
results because the density gradient is radially outward for a bubble that is lighter 
than ambient. By symmetry, negative vorticity resides along the lower interface 
of the bubble with the ambient gas. A comparison with the density contour plots 
( t  = 44 ps) shows that the generation of vorticity tracks the progress of the refracted 
shock that is inside the bubble and that precedes the incident shock. I n  the case of 
bubbles that are heavier than ambient (‘heavy’ bubble case), the vorticity generation 
seems to  track the portion of the incident shock that is outside the bubble and that 
precedes the refracted shock inside the bubble. Our conclusion is that both shocks 
actually contribute to the vorticity, which appears to track the shock that travels 
fastest. The refracted shock in the light-bubble case generates less vorticity over the 
downstream half of the bubble since the associated pressure gradient is more nearly 
aligned with the density gradient of the bubble than a planar shock would be. I n  
addition, the (diffracted) incident shock interacts more weakly with the downstream 
half of the bubble because of intersection with the primary and secondary 
transmitted waves (Haas & Sturtevant 1987) which arrive first a t  the downstream 
side (see figure 2, t = 129 ps). The values of the vortex strength computed from the 
simulations are smaller owing to these factors (94.5). 

The rotational motion associated with the vorticity pulls a jet of ambient gas 
through the centre of the bubble. As the bubble deforms, the vorticity distribution 
rolls up with the fluid to form a vortex filament pair (see 52.3 for definition). This 
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FIGURE 2. Density contours for a planar shock interacting with a ‘light’ cylindrical bubble. The 

six contours are evenly spaced over the range from 2.2 x to 1.62 x g/cm3. M = 1.23. 
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FIGURE 3. Vorticity contours for the cylindrical-bubble case of figure 2. Range: six contours 
from 2.0 x lo4 to 8.0 x lo4 s-’. 

nonlinear self-interaction of the vorticity field thus causes the emergence of 
recognizable vortex structures in the fluid after the shock interacts with a local non- 
uniformity (e.g. a bubble). Notice that the presence of the vortex filament is readily 
discernible from the vorticity contour plots while the density contours do not clearly 
indicate the presence of the filament. Figure 3 also shows that the direction of the 
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Experiment? Simulation 
Geometry Structure ( 4 s )  (m/s) 
Cylinder Upstream edge 170 198 Ifr 15 

Downstream edge 145 143 
Jet  230 214 
Vortex filaments 128 135 

Sphere Upstream edge 190 213+30 
Downstream edge 145 154 
Jet  335 33 1 
Vortex ring 165 175 

t Haas & Sturtevant (1987). 

TABLE 1. Characteristic velocities for light-bubble cases 

vortex roll-up relative to the flow behind the incident shock produces a strong 
shear which separates some of the vorticity from the filaments. This appears as 
a ‘c’-shaped tail in the vorticity diagrams. Thus the filaments do not contain all 
of the vorticity that is generated. At later times, weakening and partial breakup 
of the vorticity field occur. 

The density contour diagrams show the features visible in experimental 
shadowgraphs (Haas, 1984; Haas & Sturtevant 1987). (Our figure represents a slice 
through the experimental device while experimental photos would show a two- 
dimensional projection of the three-dimensional density distribution.) The rare- 
faction wave produced by the acceleration of the shock through the bubble was 
observed, and the evolving shape of the front of the jet is the same as in the 
laboratory experiments (figure 2, t = 463 ps). The curvature of the shock during 
passage through the bubble is expected. The times that the phenomena appeared 
were in good agreement with the data of Haas & Sturtevant. A cascade to 
significantly smaller-scale structure does not occur in our computer simulations. 

A comparison of some of the velocities indicates the quantitative relationship of 
the calculations to the experimental results. As shown in table 1, the velocities of the 
jet, the upstream edge of the bubble, and the vortex filaments are consistent with 
experimental values. The computation of these velocities involves measuring 
changes in location of the appropriate features over 400 time steps and dividing over 
the elapsed time ( z 160 ps). The tables give values derived by averaging over several 
such intervals. Section 4.6 discusses the uncertainties shown in tables 1 and 2. The 
version of the paper by Haas & Sturtevant (1987) to which we have referred did not 
provide estimates of the experimental uncertainties, although 0 4.6 touches upon 
that aspect as well. 

4.2. Light spherical bubble 

Figures 4 and 5 show density and vorticity contour diagrams for the case of a planar 
shock (M = 1.25) passing through the upper half of a spherical bubble (D = 45 mm) 
filled with a gas that is less dense than the ambient gas. The initial conditions behind 
the planar incident shock were p, = 1.84 x g/cm3, P, = 1.68 x los dyne/cm2 
and V,  = 1.24 x lo4 cm/s. As predicted by (l) ,  the shock again produces vorticity a t  
the interface of the bubble with the ambient gas. The associated rotational fluid 
motion causes a fluid jet through the bubble and rolls the vorticity into a vortex ring. 
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FIQURE 4. Density contours for a planar shock interacting with a light spherical bubble. 
Range: same as in figure 2. M = 1.25. 
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FIGURE 5.  Vorticity contours for the spherical-bubble case of figure 4. 
Range: same as in figure 3. 

This represents a nonlinear interaction of the vorticity with itself as mediated by the 
fluid. In contrast to the cylindrical-bubble case, the roll-up is faster and tighter, 
producing higher velocities. Consequently, the vortex ring propagates more quickly 
away from the remainder of the bubble and appears prominently in the density 
contour diagrams. The vorticity dynamics that lead to the vortex-ring formation and 
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11 , nA\ 333pj  , , + , 
FIGURE 6, Density contours for a planar shock interacting with a ‘heavy’ cylindrical 

bubble. Range : six contours from 1.35 x LOd3 to 6.00 x g/cm3. M = 1.23. 

separation from the bubble are, however, difficult to ascertain from the density 
contours alone. Table 1 again shows good agreement between velocities observed in 
the experiments of Haas & Sturtevant and our numerical simulations. 

Regarding the vortex strength produced by the shock, note again that the rapid 
passage of the refracted shock through the bubble ( t  = 85 ps) produces primary and 
secondary transmitted shocks which intersect the (diffracted) incident shock well 
before the latter traverses the downstream half of the bubble. As in the cylindrical 
case, the alignment of the refracted shock and the downstream portion of the bubble 
is considerably greater than in the case of a perfectly planar shock. These factors 
once again reduce the generation of vorticity over the downstream half of the 
bubbles as compared to the upstream half. Section 4.5 discusses this further. 

4.3. ‘Heavy ’ cylindrical bubble 

Figures 6 and 7 show density and vorticity contour diagrams, respectively, for a 
planar shock interacting with a cylindrical bubble containing a gas mixture which is 
more dense than the ambient gas (‘heavy ’ cylindrical bubble). The initial conditions 
are the same as for the light-cylindrical-bubble case, except that the density of the 
gas inside the bubble is 4 . 6 4 ~  lop3 g/cm3 (Haas 1984). This is the value for the 
mixture of Freon-22 and air reported to us by Haas at  the time our calculations were 
performed (see Haas 1984). Later the value was corrected to 3.69 x lop3 g/cm3 (Haas 
& Sturtevant 1987). This difference does not materially affect our comparisons with 
the experimental observations. Section 4.6 addresses the difference further. 

The vorticity contour diagrams show that negative vorticity is produced along the 
upper edge of the bubble, excluding the portions near the axis of the shock tube. 
Along the axis, the pressure gradient of the shock and the density gradient a t  the 
edge of the bubble are aligned, so our theory predicts that little vorticity will be 
produced there. The vorticity is opposite in sign from the light-bubble case because 
the density gradient is radially inward for the heavy bubble, making the source term 
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FIGURE 7 .  Vorticity contours for the cylindrical-bubble case of figure 6. Range : six contours 
from -5.0 x lo4 to - 1.0 x lo4 s-'. 

in (2) negative along the upper edge. By symmetry, positive vorticity resides along 
the lower bubble surface. As in the case of the light bubble, the vorticity generation 
appears to track the fastest shock, in this case the diffracted incident shock outside 
the bubble. Because the refracted wave is curved in the same manner as the upstream 
edge of the bubble, we expect less vorticity generation relative to a planar shock, 
according to (2). In  addition, diffraction of the incident shock and the complicated 
interaction of interior waves with the downstream edge of the bubble will cause 
deviations from a simplified model with planar shocks traversing the interior and 
exterior of the bubble. The values of the vortex strength computed from the 
simulations are smaller owing to these factors ($4.5). 

For bubbles that are more dense than ambient, the associated rotational motion 
opposes the flow behind the incident shock, causing significant differences relative to 
the light-bubble case. As is evident from figures 6 and 7,  no large jet is induced by 
the rotational flow. However, the vorticity, through the medium of the fluid, does 
spiral into a filament pair a t  the outer downstream edges of the bubble. The filaments 
are more easily seen in the density contour diagrams than for the case of light 
bubbles. Here, as opposed to the light-bubble case, the flows behind the incident 
shock do not set up a shear which could cause the tail of the spiral to separate from 
the filament. Thus the spiral remains intact. Notice that the tail of the spiral retains 
its initial length even though the vortex filament appears to be rolling up throughout 
the simulation. This most likely indicates straining of the fluid by rotational motions 
embedded in the flow associated with the incident shock. Another possibility is that 
more vorticity is being generated, perhaps initially by rarefaction waves propagating 
backward from the downstream edge of the continually deforming bubble. A slowly 
growing impulsive Rayleigh-Taylor (Richtmyer-Meshkov) instability a t  the up- 
stream interface of the bubble also contributes vorticity there (last paragraph of this 
section). 

The density contour diagrams track the experimental photographs closely. 
Although our interest is primarily in the development and effects of the large-scale 
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Experimentt Simulation 
Geometry Structure (m/s) (m/s) 
Cylinder Upstream edge (early) 73 68 f 22 

(late) 90 91 
Downstream edge (on axis) 78 65 

(off axis) 130: 130 
Vortex filaments 1301 98 

Sphere Upstream edge (early) 60 67 f 22 
(late) 99 86 

Downstream edge (early) 83 91 
(late) 100 110 

Jet  (early 1 165 91 

Vortex ring 79 
(late) 123 - 

- 

t Haas and Sturtevant (1987). $ See text. 

TABLE 2 .  Characteristic velocities for heavy-bubble cases 

vorticity field, note that a different sort of ‘jet ’ does occur in the heavy-bubble case. 
This jet results from the convergence of the refracted shock inside the bubble on the 
downstream edge a t  the axis (Haas & Sturtevant 1987), causing a pressure peak 
which pushes the bubble gas quickly downstream for a short time. The solution 
following convergence of the refracted wave, in fact, resembles a shock wave 
emanating from a point source, producing curved pressure waves interior and 
exterior to the bubble (Lohner et al .  1988). Evidence of the exterior wave is visible 
in figure 6 as a small density peak on axis behind the shock a t  t = 225 ps. In 
subsequent snapshots, a ‘ back-reflected ’ wave appears in the interior (Haas & 
Sturtevant 1987). This structure follows the expanding interior pressure wave that 
was present a t  t = 255 ps. The interior pressure wave itself does not appear in our 
density contour plot a t  255 ps because the (shocked) interior of the bubble at  that 
time is higher in density than our maximum contour level. A weak rarefaction 
appears in the interior on the axis a t  time t = 489 ps; the wave spreads by t = 644 
,us. This rarefaction wave is apparently a remnant of the radial expansion described 
above. Eventually the bubble strikes the edge of the shock tube some time after 
1 ms. To study quantitatively’the jet and related wave phenomena inside the bubble 
requires better resolution. Such calculations are the subject of a subsequent paper 
(Lohner et al. 1988). 

Table 2 shows a comparison of our numerical determination of various velocities 
with the experimental values of Haas & Sturtevant. This table goes beyond our main 
purpose of describing the physics of vorticity generation by the shock-bubble 
interaction. The inclusion of these numbers, however, can help us to detect 
significant differences between the laboratory experiments and our numerical 
simulations. Section 4.6 discusses the uncertainties shown in table 2 .  

This subsection focuses on the upper half of the table (heavy cylindrical bubble). 
The agreement between the experiments and the simulations is good in nearly all 
cases. Of interest is the velocity of the vortex filaments. If one uses the downstream 
edge of the apparent vortex filament in the density contour plots, one arrives a t  a 
value of approximately 130 m/s. This is somewhat greater than the flow velocity just 
upstream of the shock (1 14 m/s), indicating that the interaction with the shock-tube 
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wall was perhaps more important than the counterflow due to the vortex in the lower 
half of the system. However, using the vorticity contour plots, one obtains 98 m/s, 
which is more in line with the expectation that the counterflow of the other real 
vortex is more significant. The value given by Haas & Sturtevant seems to signify the 
velocity of the apparent downstre,am edge of the vortex filament (i.e. the ‘ off-axis’ 
portion of the bubble). Our calculations show that the motion of the vortex filaments 
is not precisely discernible from the motion of the downstream ‘off-axis’ portion of 
the deforming bubble. 

Ripples occur on the upstream edge of the heavy bubble. This is apparently the 
linear Richtmyer-Meshkov or impulsive Rayleigh-Taylor instability. Such dis- 
tortions were also present in the experiments of Haas & Sturtevant and have been 
confirmed in recent highly resolved calculations with a new compressible finite- 
elcment, code (Liihner rt al. 1988). The finite surface tension in the expcq-irncxntal 
bubble should suppress the growth of the instability to some extent. In  the case of 
the light bubble, the vorticity-induced jet destroyed the upstream surface and thus 
no similar ripples occurred. The presence of rarefaction waves propagating backward, 
the stretching and distortion of the bubble by the vortex motion, and the forward 
flow associated with the incident shock most likely render the upstream edge more 
susceptible to linear instability. According to (2), the rippling of the upstream surface 
could permit the generation of vorticity by the rearward-propagating rarefaction 
waves observed in the simulation. The vortex strength in the upper half-plane did 
increase slowly and steadily with the passage of time. The final frames of figure 6 
show evidence of smaller-scale structure in the density field. 

4.4. Heavy spherical bubble 

Figures 8 and 9 show density and vorticity contour plots for the case of a planar 
shock ( M  = 1.25) passing through the upper half of a spherical bubble ( D  = 45 mm) 
filled with a gas that is more dense than the ambient gas. The gas mixture has the 
same properties as in the cylindrical case. The shock-bubble interaction again 
produces vorticity a t  the edge of the bubble except near the axis. The rotation 
associated with the vorticity causes a portion of the bubble and the local ambient gas 
to roll into a ring with a spiral cross-section. The vorticity follows the fluid to  form 
a vortex ring. The phenomenological effects of shock curvature and diffraction on the 
generation of vorticit>y are the same as for the heavy cylindrical bubble discussed in 
fj4.3, as are the vortex roll-up and evolution. 

Again the density diagrams in figure 8 track the experimental features closely. The 
refracted shock focuses a t  a point just inside the downstream edge of the bubble 
( t  = 171 ps). The external diffracted shock reaches the shock-tube axis just before the 
focusing is complete. The focusing produces a pressure peak which results in a radial 
expansion similar to a shock wave emanating from a point source. This initiates an 
outward jet a t  the edge of the bubble and also causes a rearward-propagating 
pressure wave (not shown) and a subsequent rarefaction ( t  = 246 ps, 327 ps), as 
discussed in a previous section. The jet in the spherical case appears later as a well- 
defined spike, as opposed to the cylindrical case, in which the jet was much less 
apparent. Also worth noting is the weak density peak that appears on axis inside the 
downstream edge a t  t = 490 ps. This appears to be forward-moving shock produced 
by the interaction of the rearward-propagating rarefaction wave with the upstream 
edge of the bubble (Landau & Lifshitz 1959). Note that the vortex structure does not 
stretch toward the shock-tube walls and instead remains compact, in constrast to the 
cylindrical case. 
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FIGURE 8. Density contours for a planar shock interacting with a heavy spherical 
bubble. Range: same as in figure 6. Part ( b )  applies to later times. M = 1.25. 

Table 2 shows good agreement of the velocities of various features, as derived from 
experiment (Haas & Sturtevant 1987) and from our simulations. The only major 
discrepancies are the velocity of the vortex ring, which could not be determined 
experimentally, and the velocity of the jet, which is again caused by focusing of the 
refracted shock at the downstream edge. As the density contour diagrams in figures 
6 and 8 show, the jet is more pronounced for the spherical bubble and appears as a 
spike along the axis at  the downstream edge. Eventually the rotational motion of the 
vortex ring pulls fluid away from the axis and the spike along the axis recedes. The 
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FIGURE 9. Vorticity contours for the spherical-bubble case of Fig 8. Range: same as in figure 7. 

experiment showed a far more pronounced spike, and the velocity was initially quite 
large (165 m/s), finally relaxing to the flow velocity behind the incident shock. This 
difference between the numerical simulation and the laboratory experiment may be 
due to insufficient resolution in the computer calculation of the refracted and internal 
diffracted waves. Section 4.6 covers other possible causes. 

At late times, as shown by the density contours in figure 8 ( b ) ,  the region near the 
vortex ring breaks up into smaller-scale features that are eventually stretched 
horizontally into finger-like shapes by the flows associated with the incident shock. 
This fingering is also prominent at late times in the experimental photos of Haas & 
Sturtevant. Apparently the transition to smaller scales (figure 8 b)  decreases the 
coherence of the rotational flows, permitting the flows associated with the planar 
shock to stretch the bubble locally. The late-time diagrams also show evidence of 
Richtmyer-Meshkov instability on the upstream surface of the spherical bubble. 
This might contribute somewhat to the creation of the finger-like structures by 
introducing local alterations in the density and vorticity fields at later times. 

4.5. Vortex strength 

Equation (4) gives the vortex strength generated by the interaction of a shock with 
a light or heavy bubble, assuming that the shock remains planar throughout the 
interaction. The numerical simulations and laboratory experiments have shown that 
the incident shock is diffracted by the bubble and that a curved refracted shock 
traverses the interior of the bubble a t  a different speed than the diffracted incident 
shock. The preceding sections have presented arguments, based on our theory as 
embodied in ( 1 )  and (2), stating that the distortion and interaction of the various 
shocks will reduce the vortex strength relative to (4). Equation (4), however, still 
provides a useful means of predicting the vortex strength corresponding to a given 
set of shock and bubble parameters. Table 3 shows the values of vortex strength 
resulting from our theory, embodied in (4), and from the numerical simulations. The 
numbers verify the above ideas. 

The table presents two methods of computing the vortex strength from the 
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Simulation 

Bubble type Geometry [equation (4)] A t  Bf 

Light bubble Cylinder 9.1 4.8 3.2 
Sphere 8.5 6.5 4.3 

Theory 

Heavy bubble Cylinder - 6.5 -5.5 -4.0 
Sphere -6.1 -3.5 -3.5 

t Direct determination of circulation in the upper half-plane just after shock has passed through 

1 From axial velocity a t  location of vortex filament or ring. 
bubble. 

TABLE 3. Vortex-strength calculations m2/s for upper half-plane 

numerical simulations. The first, A, is an integration of the vorticity over the upper 
half-plane, which contains one vortex filament or one cross-section of a vortex ring. 
The other indicator of the amount of vorticity present is the flow velocity induced 
by the vortex structures after the roll-up phase. For the cylindrical case, the vortex 
filaments will induce a velocity along the axis of the shock tube given by 

where d is the perpendicular distance of the centroid of each filament to the shock- 
tube axis (axis of symmetry) and z represents position along the axis relative to the 
line joining the filament pair. The expression in (6) comes from differentiating the 
stream function for a set of discrete vorticites (Batchelor 1967, p. 530). In  the case 
of a vortex ring, the velocity induced along the axis is 

Kd2 
21,(Z) = 

2(z2 + d2)t ’ (7)  

where d and z are the same quantities as in (6). The expression in (7)  comes from 
differentiating the stream function for a vortex ring (Batchelor 1967, pp. 78, 521). 
Equations (6) and (7) show that, for the same strength K, the local velocity field of 
a vortex ring is roughly 50% faster than that of a filament pair. The velocities 
induced on the shock-tube axis will provide values of the vortex strengths through 
the use of (6) and (7)  for z = 0. Subtracting the flow velocity behind the incident 
shock from the axial velocity measured a t  the centre of the vortex-filament pair or 
vortex ring gives an approximate velocity induced on axis by the vortices. Table 3 
(column B) shows the vortex strengths inferred in this manner from the numerical 
simulations. In  the light-bubble cases, the vortex filaments contained approximately 
66 YO of the total circulation produced. This is consistent with figures 3 and 5, which 
show that shear forces broke the distribution of vorticity into two parts in the upper 
half-plane. For the heavy cylindrical bubble, the filaments contained approximately 
73% of the initial circulation. For the heavy spherical bubble, the vortex-ring 
circulation was approximately equal to the initial circulation produced by the 
shock-bubble interaction. These higher figures are consistent with the observation 
that shear forces did not break the early-time vorticity distribution into pieces. Thus 
the roll-up of vorticity continued throughout the calculation. In addition, the 
circulation was increasing slowly with time during the calculation, permitting a 
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further increase in strengths of the vortex structures. Apparently because the vortex 
ring did not stretch toward the wall, instead remaining compact, the intake of 
vorticity was more efficient than in the cylindrical case. 

4.6. Uncertainty in results of laboratory and numerical experiments 
In  analysing the results of numerical simulations, one must be careful to differentiate 
between sources of error in the numerical algorithm and uncertainties in the values 
of physical quantities derived from the numerical-simulation data. A final category 
of analysis deals with the degree of similarity between the situation modelled in a 
numerical experiment and the actual conditions in the laboratory. The paragraphs 
below discuss each factor in the context of the present problem. 

Errors in the numerical algorithm derive from mathematical considerations. The 
key issue for algorithms in computational fluid dynamics is how well the numerical 
solution, based on finite information (e.g. values a t  a finite number of spatial and 
temporal points) approximates the solution of the governing differential equations in 
a continuous spatial and temporal domain. To characterize an algorithm, one 
describes the order of the truncation error, the phase accuracy, and other properties, 
such as the order of dissipation, as we have done in $ 3 . 1  for FCT. Tests for stability 
and resolution requirements are also essential and have been performed extensively 
for FCT. The Appendix reviews the types of algorithms that might be appropriate 
for studying vortex generation by shock-bubble interaction and shows that FCT is 
representative of the most cost-effective class of algorithms a t  this time. 

The second source of uncertainty in numerical simulations comes from treating the 
resulting numbers as data coming from a numerical experiment. To obtain the 
velocity of a particular feature in the flow, for example, one must locate that feature 
in each ‘snaphsot’. This is true whether the data are in the form of shadowgraphs 
from a laboratory experiment or density contour diagrams from a numerical 
simulation. The second type of uncertainty is therefore common to both laboratory 
experiments and numerical simulations. Neither measurement is exact, and for 
reasons given below, the present authors have attributed the particular uncertainties 
to the simulation velocities shown in tables 1 and 2 and expect similar magnitudes 
for uncertainties in the laboratory experiments. 

Each of the velocities in tables 1 and 2 relates to the speed of an interface or a 
structure (vortex or jet). As explained in $3.1 and the Appendix, the FCT algorithm 
smears discontinuities over approximately three grid cells. Thus the uncertainty in 
the speed of a given interface is the uncertainty (approximately f 3  cells) in the 
distance that the interface travels between two snapshots divided by the time 
interval between snapshots. In  the laboratory experiments, shadowgraph photos 
corresponding to different times were obtained by running separate experiments that 
were as nearly identical as possible (J.-F. L. Haas 1983, private communication). 
Thus the speed of a given feature was uncertain because different shocks and bubbles 
were used to show the conditions a t  different times, leading to both spatial and 
temporal inaccuracies. Another factor also contributed to uncertainties in both the 
numerical simulations and the laboratory experiments. Because the boundaries of 
the shock tube were close to the bubble and because the vorticity distribution and 
the fluid were continually evolving, the flow was unsteady a t  all times. Attributing 
one velocity to an evolving interface or structure can only have significance as a 
characteristic velocity scale and should not apply to the speed over a long time 
interval. To account for all of these sources of uncertainty, we averaged the values 
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derived from several time intervals and then computed the standard deviation. This 
standard deviation was close to the number computed from the 3-cell-location 
uncertainty described above. The larger of the two appears in tables 1 and 2 for each 
type of bubble. 

A final topic to be covered in this subsection is the set of differences between the 
numerical model ($ 3.2) and the laboratory experiments. In  all cases, the effects on 
the phenomenological observations were minimal, as the good agreement in tables 1 
and 2 shows. The differences and their consequences are as follows: 

(i) The ideal-gas equation of state with y = 1.4 did not account for the different' 
value of y in the bubble gas. Our experience has shown that more realistic equations 
of state have only small effects on the phenomenology of shock physics (e.g. Book 
et aE. 1981). Since weak shocks are involved here ( M  z l ) ,  the error in the fluid 
velocity when y + 1.4 should vary roughly as (y/1.4);. I n  fact, Landau & Lifshitz 
(1969) provide a more detailed analysis which gives somewhat smaller error esti- 
mates: approximately 8% for the light bubble ( y  = 1.67) and 3 %  for the heavy 
bubble (y  = 1.31). 

(ii) The model does not include the effects of surface tension. This should render the 
bubble surface somewhat less stable, as comparisons with experiment have shown. 
Again, however, these effects are small. 

(iii) The model is two-dimensional and cannot faithfully represent the experi- 
mental apparatus or three-dimensional instabilities and small-scale processes. 
For example, the test section of Haas & Sturtevant had a square cross-section which 
could not be represented in our model. This would affect waves that reflect from the 
test-section walls, producing secondary interactions with the bubble. The. inability 
to represent three-dimensional instabilities and small-scale processes can also have 
effects on the large-scale dynamics of the vortex structures and the structuring of 
vortex cores (V. A. Kulkarny, private communication, 1987). 

(iv) The numerical simulations permit more extensive diagnostics. Especially 
important is the ability to determine the vorticity distribution directly, so that 
vortex structures and their characteristic velocites could be obtained. The charac- 
teristics of the vorticity were not as obvious in the experimental shadowgraphs 
nor were the velocities of the vortex structures as easily determined from the 
experiments (see table 2 ) .  

(v) In  cases for which the bubble gas was heavier than the ambient air, the 
experimental bubble was more like a teardrop than a sphere in shape (Haas 1983, 
1984 ; Haas & Sturtevant 1987). This could lead to stronger focusing of the refracted 
shock and a stronger initial impulse to the jet in the heavy-spherical-bubble case. 

(vi) The teardrop shape of the laboratory bubble contributes in another way to the 
observation of a more exaggerated jet in the laboratory experiments than in the 
simulations. Over a significant portion of the laboratory bubble, the misalignment 
between t,he density gradient of the bubble and the pressure gradient of the incident 
shock was less than for the perfect sphere that was present in the numerical 
simulations. Equation (2) shows that the resulting vortex strength is lower when the 
misalignment is less. The vortex motion opposing the jet is thus less effective in 
reducing the speed of the jet in the laboratory experiments than in our simulations 
($  4.4). The experimental photos of Haas & Sturtevant give some indication that this 
is so. 

(vii) The simulations of the heavy-bubble cases used a bubble density of 
4.64 x 
g/cm3. Equation (4) of our theory permits the assessment of the differences between 

g/cm3 rather than the last reported experimental value of 3.69 x 
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the simulations and experiments due to this discrepancy. The other variables being 
approximately the same, the ratio of vortex strengths for bubble densities pol and 
poz is then 

Since the induced velocities are proportional to K ,  the vortex contributions to the 
velocity field should be 20% lower in the experiment in comparison to our 
simulations. From (6) and (7) and the values of the vortex strength inferred from 
the velocity field of the simulations (table 3, column B), this should amount to 
x 10 m/s at the axis of the shock tube and less elsewhere. Given the value of 
x 120 m/s for the flow behind the incident shock, differences of less than x 10% 
could appear in the characteristic velocities of table 3. Very near the vortex 
structures, the differences should be even smaller because of boundary effects. 
In  the cylindrical-bubble case, for example, the real vortex filament in the upper 
half-plane experiences the flow field of the vortex filament in the lower half-plane 
and the flow induced by the image vortex corresponding to the upper boundary. The 
latter two fields are oppositely directed, so that the effect on the velocity of the 
vortices is reduced. 

5. Summary 
The primary goal of this work has been to explore theoretically and numerically 

the simplest case of a shock interacting with a fluid containing discrete 
inhomogeneities : the case of a single isolated inhomogeneity. The emphasis has been 
on the generation and dynamics of long-lived vorticity by such processes. The 
experiments of Markstein (1957a, b )  and, in particular, Haas (1983, 1984) and Haas 
& Sturtevant (1987) have provided excellent points of reference for an investigation 
of the effects of geometry and density of the inhomogeneity relative to the ambient 
medium. This paper has shown that residual vorticity is generated at the edge of the 
inhomogeneity except near the axis, in accordance with our nonlinear theory, based 
on ( l ) ,  ( 2 )  and (4). The vorticity dominates much of the late-time dynamics of the 
entire system. Further, the vorticity interacts nonlinearly with itself through the 
medium of the surrounding fluid, producing distinct vortex structures, depending on 
the geometry of the inhomogeneity. These structures were difficult to ascertain from 
the density diagrams and experimental shadowgraphs in most cases, but were readily 
determined in the vorticity diagrams. The nonlinear self-interaction picture provides 
an alternative and a more attractive theoretical point of view than linear impulsive 
Rayleigh-Taylor theory. The nonlinear analytic model gives a value for the vortex 
strength that explains a decrease in the normalized vortex-structure propagation 
velocities with increasing Mach number of the incident shock, unlike other theories. 

Equally as interesting, but not examined as closely in this paper, were the 
refraction, reflection, and diffraction of the shock by the inhomogeneity a t  early 
times in the experiments and simulations. The simulations have demonstrated the 
effects associated with the divergence of the shock within the lighter bubble and the 
focusing by the heavier bubble. We are now performing calculations with optimum 
resolution of the various wave structures associated with the early-time phenomena 
(Lijhner et al. 1988). Haas & Sturtevant (1987) have thoroughly discussed the 
qualitative features and experimental wave parameters for the behaviour a t  early 
times. 
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Appendix : Survey of numerical algorithms 
The present problem is a very difficult one from a numerical point of view, 

involving non-steady compressible flows (shocks) which generate non-steady, 
complex rotational flows embedded in a compressible medium. In  addition, the 
system boundaries are nearby. The presence of two fluids of different density 
separated by sharp interface (bubble boundary) is a further complication. Most 
numerical treatments of evolving rotational flows have treated the flows in isolation, 
assuming incompressibility, and are totally inappropriate in the present context. Our 
discussion must, therefore, begin with algorithms that treat shocks adequately. One 
cannot, of course, expect the algorithms used most often for problems containing 
shocks (i.e. those algorithms that have been thoroughly explored and optimized) to 
be the best for rotational flows as well. Thus the discussion will cover algorithms that 
are presently under development and that offer some hope of optimum treatment of 
both shocks and the complex rotational flows generated by them. 

Algorithms for treating shocks are of two general types : ‘shock-fitting ’ schemes 
and ‘ shock-capturing ’ schemes. For two-dimensional flows, shock-fitting or 
‘front-tracking’ methods (Richtmyer & Morton 1967: Chern et al. 1986) compute 
the locations of physical waves in the fluid through the use of a system of curves 
associated with the waves. Front-tracking codes also use a two-dimensional 
finite-difference grid along with. conditions at the bounding surfaces and waves to 
determine properties at  other points in the flow. Recent results for simple supersonic 
flows (e.g. regular reflection of an oblique planar shock) and Kelvin-Helmhoz 
instability problems with velocity jumps of Mach number 0.1 to 1.0 have been 
excellent (Chern et al. 1986). In addition to the need to maintain extensive data 
structures, the main problem with this method appears to be the need for a general 
solution to the two-dimensional Riemann problem. The latter involves the 
development of a complete list of elementary wave interactions for the problem being 
simulated. Apparently the prospects for this approch to multidimensional flow have 
become much better due to the progress shown by Chern et al. However, we must 
presently classify front-tracking methods as still under development relative to the 
shock-bubble interaction problem. Because our problem involves a sharp interface 
between the bubble and the ambient gas, the front-tracking methods should be of 
great interest once the algorithms have been fully developed and optimized. 

The other type of algorithm for handling shocks is called ‘shock capturing’ and 
again uses a finite-difference grid. In these calculations, shocks are smeared out on 
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the grid t>o prevent non-physical numerical oscillations (Richtmyer & Morton 1967). 
Usually other discontinuities (e.g. interfaces between different materials) will be 
smeared out over a small number of grid cells as well, so that the locations of 
intefaces will be uncertain to that extent. Woodward & Colella (1984) have given an 
excellent review of the most well-known classes of shock-capturing algorithms, 
including descriptions, tests, and comparsions of representatives of each class. The 
classes are as follows : artificial-viscosity methods, linear hybridization, and 
Godunov’s approach. 

The first category is also the oldest and involves adding enough artificial viscosity 
to the hydrodynamic equations to 3nsure smoothness of the solution a t  dis- 
continuities. This is also the most expensive technique because very fine grids (large 
numbers of grid points in the physical domain) are required to ensure convergence 
of the solution. On coarse grids, the non-physical viscosity degrades the solution 
prematurely. Continuously adaptive meshes have been used to place the finest grid 
cells near the thinnest features in the flow to minimize the expense of an accurate 
calculation. Unfortunately such schemes require an implicit treatment of the flow 
and thus are quite slow. In  addition, the schemes are quite complex in two or more 
dimensions (Woodward & Colella 1984). 

Linear hybridization blends a high-order finite-difference scheme with a low-order 
scheme, as described in an earlier section (3.1) on flux-corrected transport. Taken 
separately, a high-order (second-order or greater) scheme gives high accuracy in 
smooth flow but produces numerical oscillations or instability a t  discontinuities. A 
low-order algorithm with sufficiently large dissipative truncation errors will produce 
smooth (monotonic) profiles a t  discontinuities but will suffer from the same 
limitations as the artificial viscosity algorithms described above. Properly mixed, the 
high- and low-order portions of the hybrid scheme place the largest dissipation in the 
vicinity of discontinuities to maintain smoothness while giving high accuracy 
everywhere else. Usually discontinuities are smeared over 2-3 cells by this procedure. 
The use of the high-order scheme elsewhere prevents discontinuities from spreading 
over more than 2-3 cells throughout the calculation. Flux-corrected transport was 
the first of these algorithms that worked really well and has been successfully (and 
easily) applied to the largest range of problems, including those with strong shocks 
(Book et al. 1981) and others with nonlinear instability in subsonic shear flows 
(Grinstein et al. 1986). Thus the FASTBD code has previously provided excellent 
results on both types of phenomena involved in shock-bubble interactions. The most 
recent hybrid finite-difference algorithm under development is the ‘ total-variation- 
diminishing’ scheme of Harten (1983) and Yee (1987). For the same computational 
price on the same problem, these schemes should not give large improvements over 
the second-order FCT algorithm in FASTYD, although they are in principle more 
general and flexible. Another subcat’egory worthy of mention is the two-dimensional, 
fully compressible, finite-element code being developed by Lohner (1987) and Lohner 
et al. (1987), which uses an unstructured, adaptive, triangular grid to produce 
optimum resolution of all waves and interfaces. 

The last category of successful two-dimensional algorithms have built on 
Godunov’s approach, piecing together discontinuous solutions based on Riemann’s 
shock-tube problem. The latest and most successful of these is the piecewise 
parabolic method (PPM) of Colella & Woodward (1984). The PPM algorithm is 
particularly good for very strong shocks. The drawback of the method is the much 
greater complexity of the code. For studying the phenomenology of the interaction 
between a weak shock and a bubble, the increased complexity of the code may not 
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be cost-effective. The Riemann solver, which improves the treatment of wave 
interactions will be of little advantage for studying the rotational flows present after 
the shock has left the vicinity of the bubble. At that  point wave interactions will be 
much less important. Also, the complex wave structures present during the 
interaction might require a much more general multidimensional Riemann solver 
than is currently included in PPM. As indicated above, shock-fitting algorithms can 
suffer from this problem as well. 

To complete the discussion we should briefly consider algorithms that handle 
rotational flows well and indicate which approaches might provide an optimum 
treatment of the problem a t  hand. Finite-difference algorithms must necessarily be 
limited to those given above. Worthy of mention, however, is the SPLISH code 
(Fritts & Boris 1979; Fyfe, Oran & Fritts 1989). SPLISH is Lagrangian, applies to 
incompressible flows, and features a dynamically restructuring, triangular grid to 
resolve interfaces exceptionally well. A compressible version of the code might be 
optimum for this problem. In addition to finite-difference schemes, the two methods 
most often used have been ‘vortex methods’ and spectral methods. The vortex 
methods (Leonard 1980) include the following : point vortices, vortex blobs, contour 
dynamics, and vortex-in-cell methods (including cloud-in-cell methods). The greatest 
limitation for our purposes is that  these methods have been designed for 
incompressible fluids only. That any vortex method would alone form the basis for 
modelling the interaction of a shock with a bubble is presently unthinkable. 
Proposals have been made for a hybrid code incorporating a shock-capturing 
algorithm and a vortex method to handle the different components of a complex 
compressible flow field (R. Guirguis, 1986, private communication). Such a code is 
years away from practical application. One might also attempt to use a compressible 
finite-difference code for the time interval over which the shock interacts with the 
bubble and then switch to a vortex method to compute the evolution of the flow 
field after the interaction. This would imply that the late-time flow field was 
incompressible. The applicability and development of such a method would itself 
form an interesting and challenging field of research. 

Spectral algorithms are far more promising than vortex methods a t  this time 
(Gottlieb 1985). These techniques involve expansions of the flow variables in terms 
of appropriate functions and then solving sets of ordinary differential equations for 
the expansion coefficients. The most successful applications to date have involved 
incompressible fluids with vortex structures and incompressible turbulent flows. 
However, both shock-capturing and shock-fitting spectral algorithms have been 
developed and applied to  specific problems. The primary drawback is that shock 
waves can produce numerical oscillations throughout the grid, and the solution can 
be quite unstable (Gottlieb, 1985). Approaches to this problem include the addition 
of artificial viscosity and the use of special filters a t  regular intervals. Clearly much 
more work is necessary to  develop a practical spectral algorithm with applications to 
a wide range of compressible flows. 

This discussion shows that linear hybrid shock-capturing schemes, such as the 
FCT algorithm which we use, are presently the most cost-effective and reliable for 
multidimensional modelling of shock-bubble interactions and the subsequent 
evolution of rotational flows. I n  addition, the FASTBD code, which incorporates 
FCT, has successfully handled problems containing both shocks and evolving 
subsonic rotational flows, like those generated by the shock-bubble interaction. One 
must anticipate that a shock-capturing algorithm would require a much finer grid for 
quantitative modelling of rotational flows involving material interfaces than for 
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quantitative treatments of shocks alone. Thus a reasonably priced calculation with 
FCT will be useful primarily for studying the structural features of the shock-bubble 
interaction experiments. Fortunately this is our main objective. An additional 
concern in getting quantitatively correct calculations is the need to account for 
three-dimensional effects. Although three-dimensional FCT codes are available 
(FAST3D : Fyfe et al. 1985), the cost of running such calculations is unjustified, since 
our primary interest is in the physics of the problem and not in modelling specific 
experiments. 
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